Euler's method

1. Use four steps of Euler's method to approximate a solution on the interval $[0,1]$ to the initial-value problem defined by

$$
\begin{aligned}
y^{(1)}(t) & =-y(t)+t-2 \\
y(0) & =1
\end{aligned}
$$

Answer: 1.0, $0.250,-0.250,-0.56250,-0.7343750$
2. Use eight steps of Euler's method to approximate a solution on the interval $[0,1]$ to the initial-value problem defined that shown in Question 1.

Answer: To ten digits of significance, $1,0.625,0.3125,0.0546875,-0.1552734375,-0.3233642578$, $-0.4548187256,-0.5542163849,-0.6255643368$.
3. If the actual solution is $y(t)=4 e^{-t}+t-3$, argue that this method is indeed $\mathrm{O}\left(h^{2}\right)$ for a single step.

Answer: To four significant digits, the error of the approximation of $y(0.25)$ in Question 1 is 0.1152 and the error of the approximation of $y(0.125)$ in Question 2 is 0.02999 , and this second value is approximately one quarter the error of the first.
4. If the actual solution is $y(t)=4 e^{-t}+t-3$, argue that this method is indeed $\mathrm{O}(h)$ over multiple steps.

Answer: $y(1)=4 e^{-1}+1-3 \approx-0.5284822353142307136$, so the error of the approximation in Question 1 is approximately 0.2059 while the error with the second approximation is 0.09708 , which is approximately half that of the previous approximation.
5. Note that the $2^{\text {nd }}$-derivative of the solution to the ivp in Question 1 is $4 e^{-t}$, and thus the second derivative on the range $[0,1]$ goes from [$\left.4 e^{-1}, 4\right]$. Does this make sense with respect to the error analysis?

Answer: The error would be $1 / 2$ multiplied by $t_{f}-t_{0}$ multiplied by h and the value of the second deritvative evaluated somewhere on the interval $\left[t_{0}, t_{f}\right]$. Thus, in this case, the errors should lie on the intervals [$0.1839,0.5$] and [$0.09197,0.25$], and in both cases, the error falls in the given interval.

